Plant Control & Quality Innovations in Equipment & Technology:

NCAUPG Technical Conference 2012 Indianapolis, IN

Payne & Dolan Inc. Vertically Integrated Construction Company

Operations Aggregates-Asphalt

Overview

- Quality Assurance
- Forces Driving Quality
- Innovations in Quality over the years
- Quality/Production Relationship
- Future Expectations

- QA testing: Activities designed to ensure that the development process is adequate to ensure you meet given objectives-(Proactive QC)
- QC testing: Activities designed to evaluate a developed product-(after the fact)
- Contractor Terms QA=Risk Management

Factors Driving Quality

Economics

- Reduction in virgin asphalt
- Reduction in virgin aggregates
- Using high RAP/RAS mixes saves money
- Vital to our industry
- Competitive edge
- Risk

Asphalt vs. Concrete

Competition is getting stiffer
 Maintain economic advantage while providing superior quality

Ensure Quality

Economic forces Driving Quality

											259	% RAP &	209	% RAP &	15	% RAP &
Material		%/ton	Costs/ton (\$)		Virgin		50% RAP		30% RAP		5% RAS		5% RAS		5% RAS	
Binder	Pb total Mix	5.80%														
	RAP AC	5.00%														
	RAS AC	22%														
	Virgin Binder		\$	600.00	\$	34.80	\$	19.80	\$	25.80	\$	20.70	\$	22.20	\$	23.70
ate	Virgin		\$	12.00	\$	11.30	\$	5.60	\$	7.88	\$	8.04	\$	8.56	\$	9.13
greg	RAP		\$	8.00			\$	4.00	\$	2.40	\$	2.00	\$	1.60	\$	1.20
Agg	RAS		\$	30.00							\$	1.50	\$	1.50	\$	1.50
	Mix Cost Per Ton				\$	46.10	\$	29.40	\$	36.08	\$	32.24	\$	33.86	\$	35.53
	% Savings from Virgin					0%		36 %		22%		30 %		27 %		23%

Wisconsin Specifications

Allowable Combination Maximums

Recycled Asphaltic Percent Binder Replacement

Material	Lower Layer	Upper Layer
RAS only	25	20
RAP & FRAP	40 (30)	25 (20)
RAS & RAP & FRAP	35 (30)	25 (20)
DP _F Ratio	1.2	
VMĀ (19.0-9.5)	13-15	
(2010 Specifications)		

Typical Gradations

Parameter	Typ. RAP	Typ. RAS	Тур. Е-1	Typ. E-10
AC	4.80%	29.10%	5.00%	4.91%
19.0mm	100.0	100.0	99.5	99.4
12.5mm	100.0	100.0	92.5	92.6
9.5mm	96.0	100.0	82.7	83.1
4.75mm	73.0	94.0	61.9	63.6
2.36mm	56.0	88.5	46.3	43.3
1.18mm	45.0	71.0	36.1	30.2
0.600mm	36.0	49.0	27.1	21.1
0.300mm	23.0	41.5	14.6	11.8
0.150mm	23.0	33.5	7.0	6.5
0.075mm	10.0	27.0	4.6	4.4

Mix w/25% RAP and 5% RAS requires all Virgin Aggregates <1% P200

Washing Aggregates

Controlling Size

1000 - (50/3 x IRI)

-250

≥ 60 to < 75

≥75

Controlling Size

Controlling RAP: Agglomeration and Oversize

Controlling Size

Controlling Moisture

Measure Consistent and Accurately
Moisture Probe vs stockpile sample (lab)

Plant Capacity

Remove the Moisture

- Know your moisture content
 - Moisture changes
 - Your mix volumetric change
 - Quality Changes
 - Pay factors change
 - Production

Plant Capacity

500 TPH Plant

- Capacity to Remove H₂O?
 - 25 ton H₂O Total per Hour
 - 5 ton H₂O Mixing / Rap Entry
- RAP Moisture 5.0%
- RAS Moisture 10.0%
- Virgin Aggregate 3.5%

Plant Capacity

Mixing/Drying Capacity 500TPH Plant

Percent Recycle	TPH
50% RAP	200
30% RAP	335
25% RAP, 5% RAS	285
20% RAP, 5% RAS	335

- Controlling factor 5TPH of H₂0 removal after RAP entry
- Savings doesn't take into account Plant efficiency

Existing Plant Capacity

Capital Costs: Bigger Drums

Capital Costs: Aggregate Storage

Infered Camera

Drying/Flighting

Dramatically increasing Virgin Aggregate **Temperatures**(super heating) can increase aggregate degradation in your drum. Knowing temperatures can let help you predict absorption or degradation.

Plant Inovations

RAP Entry Evaluation?

Asphalt Cement (AC)

is added to the mix

GENCOR ADVANCED RAP ENTRY MATERIAL FLOW

Field Checks

Controlling Variability when Sampling Sampling....When, Where & How?

PAYNE & DOLAN

Controlling Variability Measuring Dust

Control Dust Surges from baghouse to Drum

- Record by Mix / Plant amount of dust created in Drum
- Maintain constant dust flow through baghouse
- Control Dust Surges within your system

Plant Control Systems

Control Systems

- Record / Graphing Telemetry Systems
- Multiple Weigh Point System vs Single Weigh Point System
- Capability to separate RAP on Inclines

Measuring Weight

Incline (Combined Weights) vs Individual Bin

Controlling Variability using Control Systems

Control System Logging - Real Time

- Each Keystroke logged
- All material calibrations stored
- Mix changes / TPH ongoing
- Fuel / Power Usage

AC / Additive Flow

EVENT DATE	PERSON PE	NG INVEST	(CREW'S MANAGER/SUPERVISO						
INVESTIGATION DATE							NDIVIDU	JALS IN	VOLVED	
ESTIMATED TIME SPE	INT TO COM	PLETE RE	PAIR:		HRS					
PRODUCTION STOPP	ED AT WHAT	TIME:								
PRODUCTION RESUM	IED AT WHA	T TIME:								
INVESTIGATION INCL	JDED SITE V	'ISIT:		Yes	No					
				CATEGO	RY					
CONTROL HOUSE			CONVEYC	OR BELTS				LOAD	ER/SKID	STEEE
SILOS		BAGHOUS	SE				PLANT COMPUTER			
DRAG			AC TANK(SCAL	ES/LOAD	OUT S		
DRUM			BURNER F		SCHEDULING					
BURNER			PUMPS					PLAN	T MANAC	GEMEN
FEDDER BINS		METERS/1		AGGREGATE MANAG						
RECYCLE BINS			GENERAT	OR				OTHE	R:	
	DESCRIPTI	ON OF SI	TUATION (A brief expla	nation of how	the even	t or situa	tion (Bre	eakdown)	occurre

ROOT CAUSES (why did the event occur?) Check all that apply.

ASPHALT PLANT ROOT CAUSE ANALYSIS

DEDSONINEL EACTORS

VOTEM/COLUDNENT

Success Stories

STH 47 Wisconsin – WARRANTY PROJECT

E-3 12.5mm
 20% RAP
 5% RAS
 Average IRI 34

Success Stories

STH 47 Wisconsin

Wisconsin Outstanding Paving Award Winner

Division of Transportation System Development Bureau of Project Development P O Box 7916 Medison, WI 53707-7916 Scott Walker, Governor Mark Gottlieb, P.E., Secretary Internet www.rist.wsconsin.gov

Telephone: 808 265-1631 Facsmile (FAX): 809 265 9459

E-mail: <u>DOTOTSDEPD@dot.wigov</u>

Dear Mr. GANNON:

Final selections have been made for the Department's annual construction award program It is our pleasure to advise you that your company has been selected as the winner of the outstanding Asphalt Paving award in 2011 for your work on STH 47, Shawano/Outagamie Counties.

The presentation of awards will be made in Madison at the Wisconsin Transportation Builders Association Awards Program scheduled for the evening of January 18, 2012, at the Madison Marriott West. We would appreciate you advising Don Greuel at (608)267-7774 by January 6, 2012, of the name and title of the person you would like to have present at the awards ceremony to accept the plaque on behalf of your firm.

I extend to you my personal congratulations on being selected as an award winner. It is an henor of which I am sure your company can be justifiably proud

Sincerely, Non A court

Don Greue'

Chief Project Services Engineer

CC: WTBA

Future Expectations

- Plant efficiencies continue to get better for high recycle materials
- Plant Automation Systems
 - Real time QA results continual
- Develop real time gradation Testing
 Close to being perfected
- Lower risk for our customer and contractor

Thank You!

JBartoszek@crmanagement.com